This novel multi-scale and multi-disciplinary approach will be applied and embedded in temperate ecosystems – grass (Cabauw, Veenkampen) and forest (Loobos)- at the Ruisdael observatory (Netherlands) as well as in a boreal forest (SMEAR-II, Finland) and a tropical rain forest (ATTO, Brazil) (see Figure). In all these ecosystems, clouds play a major role and therefore, we expect larger interactions between the ecosystems and the cloud organization. CloudRoots findings could be key to developing realistic and scalable model representations of the active role of the vegetated land in atmosphere dynamics, and vice versa, and will contribute to improving predictions of weather and climate.

The CloudRoots ecosystems: tropical, temperate and boreal, and their anchor stations

ecosystems map


The boreal forest will complete the ecosystems understudy. Characterized by relatively moderate carbon storage and evaporative fraction, this system is also susceptible to potential changes due to more frequent droughts and heatwaves. We will make use of the smear-II observation station and use a modelling framework similar to the one proposed for the tropical and temperate ecosystems that will combine conceptual and explicit turbulent modelling.